ตัววิ่ง

ยินดีต้อนรับสู่เว็บบล็อก ของนางสาวจิราพร โพธิ์ใหญ่

วันจันทร์ที่ 18 มกราคม พ.ศ. 2559

เมทริกซ์

เมทริกซ์ คือกลุ่มของจำนวนหรือสมาชิกของริงใดๆ เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส กล่าวคือเรียงเป็นแถวในแนวนอน และเรียงเป็นแถวในแนวตั้ง เรามักเขียนเมทริกซ์เป็นตารางที่ไม่มีเส้นแบ่งและเขียนวงเล็บคร่อมตารางไว้ (ไม่ว่าจะเป็นวงเล็บโค้งหรือวงเล็บเหลี่ยม) เช่น
\begin{bmatrix}
1 & 56 & 3 \\
0 & 15 & 4 \\
5 & -31 & -4 \end{bmatrix}
เราเรียกแถวในแนวนอนของเมทริกซ์ว่า แถว เรียกแถวในแนวตั้งของเมทริกซ์ว่า หลัก และเรียกจำนวนแต่ละจำนวนเในเมทริกซ์ว่า สมาชิก ของเมทริกซ์ การกล่าวถึงสมาชิกของเมทริกซ์ จะต้องระบุตำแหน่งให้ถูกต้อง เช่น จากตัวอย่างข้างบน
สมาชิกที่อยู่ในแถวที่ 2 หลักที่ 3 คือเลข 4
สมาชิกที่อยู่ในแถวที่ 2 หลักที่ 2 คือเลข 15
สมาชิกที่อยู่ในแถวที่ 3 หลักที่ 1 คือเลข 5
เราเรียกเมทริกซ์ที่มี m แถว และ n หลัก เรียกว่า เมทริกซ์  m \times  n  เราเรียกจำนวน m และ n ว่า มิติ หรือ ขนาด ของเมทริกซ์
เราใช้สัญญลักษณ์ A = (a_{i,j})_{m \times n} เพื่อหมายถึง เมทริกซ์ A ซึ่งมี m แถว และ n หลัก โดยที่ a_{i,j} (หรือ a_{ij}) หมายถึง สมาชิกที่อยู่ในตำแหน่ง แถว i และ หลัก j ของเมทริกซ์ อ่านเพิ่มเติม
A=A_{m \times n}=\begin{bmatrix}
a_{11} & a_{12} & \cdots & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & \cdots & a_{2n}\\
\vdots &        & \ddots &        & \vdots\\
\vdots &        &        & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & \cdots & a_{mn}\\
\end{bmatrix}

ความสัมพันธ์และฟังก์ชัน

ความสัมพันธ์และฟังก์ชัน

 คู่อันดับ (Order Pairเป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, bจะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d

ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต Bคือ เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B

สัญลักษณ์      ผลคูณคาร์ทีเซียนของเซต A และเซต B เขียนแทนด้วย A x B
หรือ เขียนในรูปเซตแบบบอกเงื่อนไขจะได้ว่า 
ความสัมพันธ์ (Relation)r เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r เป็นสับเซตของ A x B
โดเมน (Domain) และ เรนจ์ (พิสัย) (Range)
  1. โดเมน (Domain) ของความสัมพันธ์ r คือ เซตที่มีสมาชิกตัวหน้าของทุกคู่อันดับในความสัมพันธ์ r ใช้สัญลักษณ์แทนด้วย Dr ดังนั้น  Dr = {x | (xy) ε r}
  2.  เรนจ์ (Range) ของความสัมพันธ์ r คือ เซตที่มีสมาชิกตัวหลังของทุกคู่อันดับในความสัมพันธ์ r ใช้สัญลักษณ์แทนด้วย R rดังนั้น  Rr = {y | (xy) ε r} อ่านเพิ่มเติม

เลขยกกำลัง

  เลขยกกำลัง
      คือ การคูณตัวเลขนั้นๆตามจำนวนของเลขชี้กำลัง ซึ่งตัวเลขนั้นๆจะคูณตัวของมันเองและเมื่อแทน a เป็นจำนวนใด ๆ และแทน n เป็นจำนวนเต็มบวก โดยที่มี a เป็นฐานหรือตัวเลข และ n เป็นเลขชี้กำลัง(an) จะได้ว่า a คูณกัน n ตัว (axaxaxaxax…xa)
    ตัวอย่าง
                  25 เป็นเลขยกกำลัง ที่มี 2 เป็นฐานหรือตัวเลข และมี 5 เป็นเลขชี้กำลัง
       และ         25   = 2x2x2x2x2  = 32
สมบัติของเลขยกกำลัง   
1. สมบัติการคูณเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก เมื่อ a เป็นจำนวนใด ๆ และ m, n เป็นจำนวนเต็มบวก         
เช่น     23x 27x 29 = 2 (3 + 7 + 9) = 219
2. สมบัติการหารเลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก
กรณีที่ 1 เมื่อ a เป็นจำนวนจริงใดๆที่ไม่ใช่ศูนย์ และ m, n เป็นจำนวนเต็มบวกที่ m > n
เช่น     412÷ 43=412-3  = 49
กรณีที่ 2 เมื่อ a เป็นจำนวนจริงใดๆที่ไม่ใช่ศูนย์ และ m, nเป็นจำนวนเต็มบวกที่ m = n
นิยาม ถ้า a เป็นจำนวนจริงใดๆ ที่ไม่ใช่ศูนย์ a0 = 1
 เช่น      67÷ 67 = 67-7 = 60  = 1  หรือถ้า (-7)o = 1
 กรณีที่ 3เมื่อ a เป็นจำนวนจริงใดๆที่ไม่ใช่ศูนย์ และ m, n เป็นจำนวนเต็มบวกที่ m < n   
เช่น      =  1/ 54-9
นิยาม ถ้า a เป็นจำนวนจริงใดๆ ที่ไม่ใช่ศูนย์ และ n เป็นจำนวนเต็มบวก
  3.สมบัติอื่นๆของเลขยกกำลัง 
1. เลขยกกำลังที่มีฐานเป็นเลขยกกำลัง                 
 เมื่อ a ≥0 และ m, n เป็นจำนวนเต็ม
2. เลขยกกำลังที่มีฐานอยู่ในรูปการคูณ หรือการหารของจำนวนหลาย ๆจำนวน
 และ         เมื่อ a ≠ 0 , b ≠ 0 และ n เป็นจำนวนเต็ม
3. เลขยกกำลังที่มีเลขชี้กำลังเป็นเศษส่วน
 เมื่อ a > 0 และ n เป็นจำนวนเต็มบวกที่มากกว่า 1
เมื่อ a ≠ 0 และ m เป็นจำนวนเต็มบวก ; n ≥ 2
สรุป

  เลขยกกำลังเป็นการคูณตัวเลขนั้นๆตามจำนวนของเลขชี้กำลัง ซึ่งตัวเลขนั้นๆจะคูณตัวของมันเองและเมื่อแทน a เป็นจำนวนใด ๆ และแทน n เป็นจำนวนเต็มบวก โดยที่มี a เป็นฐานหรือตัวเลข และ n เป็นเลขชี้กำลัง(an) หรือจะได้ว่า a คูณกัน n ตัว (axaxaxaxax…xa) อีกทั้งวิธีการคำนวณหาค่าเลขยกกำลังจะขึ้นอยู่กับสมบัติของเลขยกกำลังในแต่ละประเภทด้วย อ่านเพิ่มเติม